

Contents

Applications List

Preface

To Students

Use of Color

1 INTRODUCTION, MEASUREMENT, ESTIMATING

1 – 1 The Nature of Science	2
1 – 2 Physics and its Relation to Other Fields	4
1 – 3 Models, Theories, and Laws	5
1 – 4 Measurement and Uncertainty; Significant Figures	5
1 – 5 Units, Standards, and the SI System	8
1 – 6 Converting Units	11
1 – 7 Order of Magnitude: Rapid Estimating	13
*1 – 8 Dimensions and Dimensional Analysis Questions, MisConceptual Questions 17 Problems, Search and Learn 18–20	16

2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

2 – 1 Reference Frames and Displacement	22
2 – 2 Average Velocity	23
2 – 3 Instantaneous Velocity	25
2 – 4 Acceleration	26
2 – 5 Motion at Constant Acceleration	28
2 – 6 Solving Problems	30
2 – 7 Freely Falling Objects	33
2 – 8 Graphical Analysis of Linear Motion Questions, MisConceptual Questions 41–42 Problems, Search and Learn 43–48	39

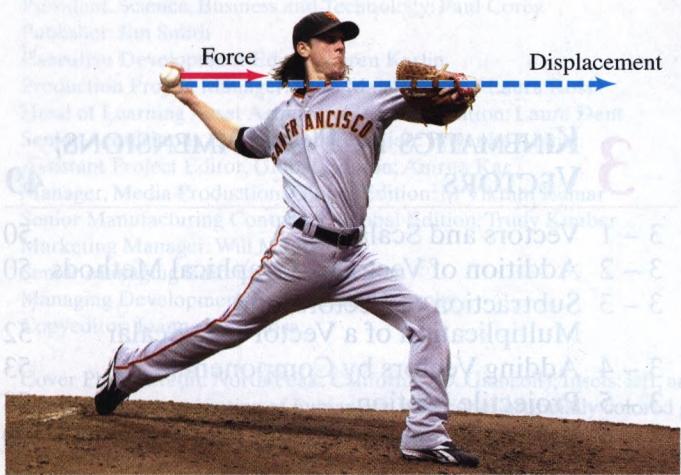
x
xiii
xviii
xix

3 KINEMATICS IN TWO DIMENSIONS; VECTORS

49

3 – 1 Vectors and Scalars	50
3 – 2 Addition of Vectors—Graphical Methods	50
3 – 3 Subtraction of Vectors, and Multiplication of a Vector by a Scalar	52
3 – 4 Adding Vectors by Components	53
3 – 5 Projectile Motion	58
3 – 6 Solving Projectile Motion Problems	60
*3 – 7 Projectile Motion Is Parabolic	64
3 – 8 Relative Velocity Questions, MisConceptual Questions 67–68 Problems, Search and Learn 68–74	65

4 DYNAMICS: NEWTON'S LAWS OF MOTION


75

4 – 1 Force	76
4 – 2 Newton's First Law of Motion	76
4 – 3 Mass	78
4 – 4 Newton's Second Law of Motion	78
4 – 5 Newton's Third Law of Motion	81
4 – 6 Weight—the Force of Gravity; and the Normal Force	84
4 – 7 Solving Problems with Newton's Laws: Free-Body Diagrams	87
4 – 8 Problems Involving Friction, Inclines Questions, MisConceptual Questions 98–100 Problems, Search and Learn 101–8	93

5 CIRCULAR MOTION; GRAVITATION

109

5 – 1 Kinematics of Uniform Circular Motion	110
5 – 2 Dynamics of Uniform Circular Motion	112
5 – 3 Highway Curves: Banked and Unbanked	115
*5 – 4 Nonuniform Circular Motion	118
5 – 5 Newton's Law of Universal Gravitation	119
5 – 6 Gravity Near the Earth's Surface	121
5 – 7 Satellites and "Weightlessness"	122
5 – 8 Planets, Kepler's Laws, and Newton's Synthesis	125
5 – 9 Moon Rises an Hour Later Each Day	129
5 – 10 Types of Forces in Nature Questions, MisConceptual Questions 130–32 Problems, Search and Learn 132–37	129

8 ROTATIONAL MOTION

8 – 1	Angular Quantities	199
8 – 2	Constant Angular Acceleration	203
8 – 3	Rolling Motion (Without Slipping)	204
8 – 4	Torque	206
8 – 5	Rotational Dynamics; Torque and Rotational Inertia	208
8 – 6	Solving Problems in Rotational Dynamics	210
8 – 7	Rotational Kinetic Energy	212
8 – 8	Angular Momentum and Its Conservation	215
*8 – 9	Vector Nature of Angular Quantities Questions, MisConceptual Questions 220–21 Problems, Search and Learn 222–29	217

6 WORK AND ENERGY

6 – 1	Work Done by a Constant Force	139
*6 – 2	Work Done by a Varying Force	142
6 – 3	Kinetic Energy, and the Work-Energy Principle	142
6 – 4	Potential Energy	145
6 – 5	Conservative and Nonconservative Forces	149
6 – 6	Mechanical Energy and Its Conservation	150
6 – 7	Problem Solving Using Conservation of Mechanical Energy	151
6 – 8	Other Forms of Energy and Energy Transformations; The Law of Conservation of Energy	155
6 – 9	Energy Conservation with Dissipative Forces: Solving Problems	156
6–10	Power	159
	Questions, MisConceptual Questions	161–63
	Problems, Search and Learn	164–69

7 LINEAR MOMENTUM

7 – 1	Momentum and Its Relation to Force	171
7 – 2	Conservation of Momentum	173
7 – 3	Collisions and Impulse	176
7 – 4	Conservation of Energy and Momentum in Collisions	177
7 – 5	Elastic Collisions in One Dimension	178
7 – 6	Inelastic Collisions	180
*7 – 7	Collisions in Two Dimensions	182
7 – 8	Center of Mass (CM)	184
*7 – 9	CM for the Human Body	186
*7–10	CM and Translational Motion	187
	Questions, MisConceptual Questions	190–91
	Problems, Search and Learn	192–97

9 STATIC EQUILIBRIUM; ELASTICITY AND FRACTURE

9 – 1	The Conditions for Equilibrium	231
9 – 2	Solving Statics Problems	233
9 – 3	Applications to Muscles and Joints	238
9 – 4	Stability and Balance	240
9 – 5	Elasticity; Stress and Strain	241
9 – 6	Fracture	245
*9 – 7	Spanning a Space: Arches and Domes	246
	Questions, MisConceptual Questions	250–51
	Problems, Search and Learn	252–59

10 FLUIDS

10-1	Phases of Matter	261
10-2	Density and Specific Gravity	261
10-3	Pressure in Fluids	262
10-4	Atmospheric Pressure and Gauge Pressure	264
10-5	Pascal's Principle	265
10-6	Measurement of Pressure; Gauges and the Barometer	266
10-7	Buoyancy and Archimedes' Principle	268
10-8	Fluids in Motion; Flow Rate and the Equation of Continuity	272
10-9	Bernoulli's Equation	274
10-10	Applications of Bernoulli's Principle: Torricelli, Airplanes, Baseballs, Blood Flow	276
*10-11	Viscosity	279
*10-12	Flow in Tubes: Poiseuille's Equation, Blood Flow	279
*10-13	Surface Tension and Capillarity	280
*10-14	Pumps, and the Heart	282
	Questions, MisConceptual Questions	283-85
	Problems, Search and Learn	285-91

11 ELECTROMAGNETIC INDUCTION OSCILLATIONS AND WAVES 292

11-1	Simple Harmonic Motion—Spring Oscillations	293
11-2	Energy in Simple Harmonic Motion	295
11-3	The Period and Sinusoidal Nature of SHM	298
11-4	The Simple Pendulum	301
11-5	Damped Harmonic Motion	303
11-6	Forced Oscillations; Resonance	304
11-7	Wave Motion	305
11-8	Types of Waves and Their Speeds: Transverse and Longitudinal	307
11-9	Energy Transported by Waves	310
11-10	Reflection and Transmission of Waves	312
11-11	Interference; Principle of Superposition	313
11-12	Standing Waves; Resonance	315
*11-13	Refraction	317
*11-14	Diffraction	318
*11-15	Mathematical Representation of a Traveling Wave	319
	Questions, MisConceptual Questions	320–22
	Problems, Search and Learn	322–27

12 SOUND 328

12-1	Characteristics of Sound	329
12-2	Intensity of Sound: Decibels	331
*12-3	The Ear and Its Response; Loudness	334
12-4	Sources of Sound: Vibrating Strings and Air Columns	335
*12-5	Quality of Sound, and Noise; Superposition	340
12-6	Interference of Sound Waves; Beats	341
12-7	Doppler Effect	344
*12-8	Shock Waves and the Sonic Boom	348
*12-9	Applications: Sonar, Ultrasound, and Medical Imaging	349
	Questions, MisConceptual Questions	352–53
	Problems, Search and Learn	354–58

13 TEMPERATURE AND KINETIC THEORY 359

13-1	Atomic Theory of Matter	359
13-2	Temperature and Thermometers	361
13-3	Thermal Equilibrium and the Zeroth Law of Thermodynamics	363
13-4	Thermal Expansion	364
13-5	The Gas Laws and Absolute Temperature	367
13-6	The Ideal Gas Law	369
13-7	Problem Solving with the Ideal Gas Law	370
13-8	Ideal Gas Law in Terms of Molecules: Avogadro's Number	372
13-9	Kinetic Theory and the Molecular Interpretation of Temperature	373
13-10	Distribution of Molecular Speeds	376
13-11	Real Gases and Changes of Phase	377
13-12	Vapor Pressure and Humidity	379
*13-13	Diffusion	381
	Questions, MisConceptual Questions	384–85
	Problems, Search and Learn	385–89

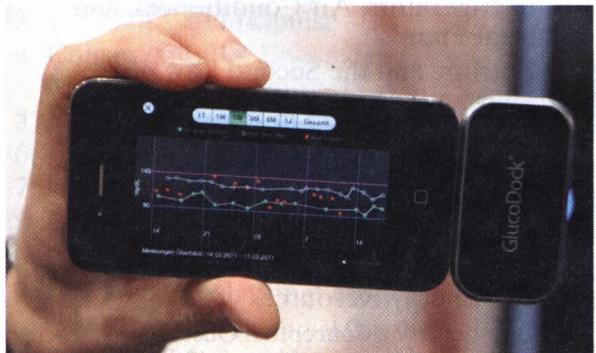
14 HEAT 390

14-1	Heat as Energy Transfer	391
14-2	Internal Energy	392
14-3	Specific Heat	393
14-4	Calorimetry—Solving Problems	394
14-5	Latent Heat	397
14-6	Heat Transfer: Conduction	400
14-7	Heat Transfer: Convection	402
14-8	Heat Transfer: Radiation	403
	Questions, MisConceptual Questions	406–8
	Problems, Search and Learn	408–11

15 THE LAWS OF THERMODYNAMICS 412

15-1	The First Law of Thermodynamics	413
15-2	Thermodynamic Processes and the First Law	414
*15-3	Human Metabolism and the First Law	418
15-4	The Second Law of Thermodynamics—Introduction	419
15-5	Heat Engines	420
15-6	Refrigerators, Air Conditioners, and Heat Pumps	425
15-7	Entropy and the Second Law of Thermodynamics	428
15-8	Order to Disorder	430
15-9	Unavailability of Energy; Heat Death	431
*15-10	Statistical Interpretation of Entropy and the Second Law	432
*15-11	Thermal Pollution, Global Warming, and Energy Resources	434
	Questions, MisConceptual Questions	437–38
	Problems, Search and Learn	438–42

16 ELECTRIC CHARGE AND ELECTRIC FIELD


443

16-1	Static Electricity; Electric Charge and Its Conservation	444
16-2	Electric Charge in the Atom	445
16-3	Insulators and Conductors	445
16-4	Induced Charge; the Electroscope	446
16-5	Coulomb's Law	447
16-6	Solving Problems Involving Coulomb's Law and Vectors	450
16-7	The Electric Field	453
16-8	Electric Field Lines	457
16-9	Electric Fields and Conductors	459
*16-10	Electric Forces in Molecular Biology: DNA Structure and Replication	460
*16-11	Photocopy Machines and Computer Printers Use Electrostatics	462
*16-12	Gauss's Law	463
	Questions, MisConceptual Questions 467–68	
	Problems, Search and Learn 469–72	

17 ELECTRIC POTENTIAL

473

17-1	Electric Potential Energy and Potential Difference	474
17-2	Relation between Electric Potential and Electric Field	477
17-3	Equipotential Lines and Surfaces	478
17-4	The Electron Volt, a Unit of Energy	478
17-5	Electric Potential Due to Point Charges	479
*17-6	Potential Due to Electric Dipole; Dipole Moment	482
17-7	Capacitance	482
17-8	Dielectrics	485
17-9	Storage of Electric Energy	486
17-10	Digital; Binary Numbers; Signal Voltage	488
*17-11	TV and Computer Monitors: CRTs, Flat Screens	490
*17-12	Electrocardiogram (ECG or EKG)	493
	Questions, MisConceptual Questions 494–95	
	Problems, Search and Learn 496–500	

18 ELECTRIC CURRENTS

501

18-1	The Electric Battery	502
18-2	Electric Current	504
18-3	Ohm's Law: Resistance and Resistors	505
18-4	Resistivity	508
18-5	Electric Power	510
18-6	Power in Household Circuits	512
18-7	Alternating Current	514
*18-8	Microscopic View of Electric Current	516
*18-9	Superconductivity	517
*18-10	Electrical Conduction in the Human Nervous System	517
	Questions, MisConceptual Questions 520–21	
	Problems, Search and Learn 521–25	

19 DC CIRCUITS

526

19-1	EMF and Terminal Voltage	527
19-2	Resistors in Series and in Parallel	528
19-3	Kirchhoff's Rules	532
19-4	EMFs in Series and in Parallel; Charging a Battery	536
19-5	Circuits Containing Capacitors in Series and in Parallel	538
19-6	RC Circuits—Resistor and Capacitor in Series	539
19-7	Electric Hazards	543
19-8	Ammeters and Voltmeters—Measurement Affects the Quantity Being Measured	546
	Questions, MisConceptual Questions 549–51	
	Problems, Search and Learn 552–59	

20 MAGNETISM

560

20-1	Magnets and Magnetic Fields	560
20-2	Electric Currents Produce Magnetic Fields	563
20-3	Force on an Electric Current in a Magnetic Field; Definition of \vec{B}	564
20-4	Force on an Electric Charge Moving in a Magnetic Field	566
20-5	Magnetic Field Due to a Long Straight Wire	570
20-6	Force between Two Parallel Wires	571
20-7	Solenoids and Electromagnets	572
20-8	Ampère's Law	573
20-9	Torque on a Current Loop; Magnetic Moment	575
20-10	Applications: Motors, Loudspeakers, Galvanometers	576
*20-11	Mass Spectrometer	578
*20-12	Ferromagnetism: Domains and Hysteresis	579
	Questions, MisConceptual Questions 581–83	
	Problems, Search and Learn 583–89	

21 ELECTROMAGNETIC INDUCTION AND FARADAY'S LAW **590**

21-1	Induced EMF	591
21-2	Faraday's Law of Induction; Lenz's Law	592
21-3	EMF Induced in a Moving Conductor	596
21-4	Changing Magnetic Flux Produces an Electric Field	597
21-5	Electric Generators	597
21-6	Back EMF and Counter Torque; Eddy Currents	599
21-7	Transformers and Transmission of Power	601
*21-8	Information Storage: Magnetic and Semiconductor; Tape, Hard Drive, RAM	604
*21-9	Applications of Induction: Microphone, Seismograph, GFCI	606
*21-10	Inductance	608
*21-11	Energy Stored in a Magnetic Field	610
*21-12	<i>LR</i> Circuit	610
*21-13	AC Circuits and Reactance	611
*21-14	<i>LRC</i> Series AC Circuit	614
*21-15	Resonance in AC Circuits	616
	Questions, MisConceptual Questions	617-19
	Problems, Search and Learn	620-24

22 ELECTROMAGNETIC WAVES **625**

22-1	Changing Electric Fields Produce Magnetic Fields; Maxwell's Equations	626
22-2	Production of Electromagnetic Waves	627
22-3	Light as an Electromagnetic Wave and the Electromagnetic Spectrum	629
22-4	Measuring the Speed of Light	632
22-5	Energy in EM Waves	633
22-6	Momentum Transfer and Radiation Pressure	635
22-7	Radio and Television; Wireless Communication	636
	Questions, MisConceptual Questions	640
	Problems, Search and Learn	641-43

23 LIGHT: GEOMETRIC OPTICS **644**

23-1	The Ray Model of Light	645
23-2	Reflection; Image Formation by a Plane Mirror	645
23-3	Formation of Images by Spherical Mirrors	649
23-4	Index of Refraction	656
23-5	Refraction: Snell's Law	657
23-6	Total Internal Reflection; Fiber Optics	659
23-7	Thin Lenses; Ray Tracing	661
23-8	The Thin Lens Equation	664
*23-9	Combinations of Lenses	668
*23-10	Lensmaker's Equation	670

Questions, MisConceptual Questions 671-73
Problems, Search and Learn 673-78

24 THE WAVE NATURE OF LIGHT **679**

24-1	Waves vs. Particles; Huygens' Principle and Diffraction	680
*24-2	Huygens' Principle and the Law of Refraction	681
24-3	Interference—Young's Double-Slit Experiment	682
24-4	The Visible Spectrum and Dispersion	685
24-5	Diffraction by a Single Slit or Disk	687
24-6	Diffraction Grating	690
24-7	The Spectrometer and Spectroscopy	692
24-8	Interference in Thin Films	693
*24-9	Michelson Interferometer	698
24-10	Polarization	699
*24-11	Liquid Crystal Displays (LCD)	703
*24-12	Scattering of Light by the Atmosphere	704
	Questions, MisConceptual Questions	705-7
	Problems, Search and Learn	707-12

25 OPTICAL INSTRUMENTS **713**

25-1	Cameras: Film and Digital	713
25-2	The Human Eye; Corrective Lenses	719
25-3	Magnifying Glass	722
25-4	Telescopes	723
25-5	Compound Microscope	726
25-6	Aberrations of Lenses and Mirrors	727
25-7	Limits of Resolution; Circular Apertures	728
25-8	Resolution of Telescopes and Microscopes; the λ Limit	730
25-9	Resolution of the Human Eye and Useful Magnification	732
*25-10	Specialty Microscopes and Contrast	733
25-11	X-Rays and X-Ray Diffraction	733
*25-12	X-Ray Imaging and Computed Tomography (CT Scan)	735

Questions, MisConceptual Questions 738-39
Problems, Search and Learn 740-43

26 THE SPECIAL THEORY OF RELATIVITY

744

26–1	Galilean–Newtonian Relativity	745
26–2	Postulates of the Special Theory of Relativity	748
26–3	Simultaneity	749
26–4	Time Dilation and the Twin Paradox	750
26–5	Length Contraction	756
26–6	Four-Dimensional Space–Time	758
26–7	Relativistic Momentum	759
26–8	The Ultimate Speed	760
26–9	$E = mc^2$; Mass and Energy	760
26–10	Relativistic Addition of Velocities	764
26–11	The Impact of Special Relativity	765
	Questions, MisConceptual Questions	766–67
	Problems, Search and Learn	767–70

27 EARLY QUANTUM THEORY AND MODELS OF THE ATOM 771

771

27–1	Discovery and Properties of the Electron	772
27–2	Blackbody Radiation; Planck's Quantum Hypothesis	774
27–3	Photon Theory of Light and the Photoelectric Effect	775
27–4	Energy, Mass, and Momentum of a Photon	779
*27–5	Compton Effect	780
27–6	Photon Interactions; Pair Production	781
27–7	Wave–Particle Duality; the Principle of Complementarity	782
27–8	Wave Nature of Matter	782
27–9	Electron Microscopes	785
27–10	Early Models of the Atom	786
27–11	Atomic Spectra: Key to the Structure of the Atom	787
27–12	The Bohr Model	789
27–13	de Broglie's Hypothesis Applied to Atoms	795
	Questions, MisConceptual Questions	797–98
	Problems, Search and Learn	799–802

28 QUANTUM MECHANICS OF ATOMS 803

803

28–1	Quantum Mechanics—A New Theory	804
28–2	The Wave Function and Its Interpretation; the Double-Slit Experiment	804
28–3	The Heisenberg Uncertainty Principle	806
28–4	Philosophic Implications; Probability versus Determinism	810
28–5	Quantum-Mechanical View of Atoms	811
28–6	Quantum Mechanics of the Hydrogen Atom; Quantum Numbers	812
28–7	Multielectron Atoms; the Exclusion Principle	815
28–8	The Periodic Table of Elements	816
*28–9	X-Ray Spectra and Atomic Number	817
*28–10	Fluorescence and Phosphorescence	820
28–11	Lasers	820
*28–12	Holography	823
	Questions, MisConceptual Questions	825–26
	Problems, Search and Learn	826–28

29 MOLECULES AND SOLIDS 829

829

*29–1	Bonding in Molecules	829
*29–2	Potential-Energy Diagrams for Molecules	832
*29–3	Weak (van der Waals) Bonds	834
*29–4	Molecular Spectra	837
*29–5	Bonding in Solids	840
*29–6	Free-Electron Theory of Metals; Fermi Energy	841
*29–7	Band Theory of Solids	842
*29–8	Semiconductors and Doping	844
*29–9	Semiconductor Diodes, LEDs, OLEDs	845
*29–10	Transistors: Bipolar and MOSFETs	850
*29–11	Integrated Circuits, 22-nm Technology	851
	Questions, MisConceptual Questions	852–53
	Problems, Search and Learn	854–56

30 NUCLEAR PHYSICS AND RADIOACTIVITY 857

857

30–1	Structure and Properties of the Nucleus	858
30–2	Binding Energy and Nuclear Forces	860
30–3	Radioactivity	863
30–4	Alpha Decay	864
30–5	Beta Decay	866
30–6	Gamma Decay	868
30–7	Conservation of Nucleon Number and Other Conservation Laws	869
30–8	Half-Life and Rate of Decay	869
30–9	Calculations Involving Decay Rates and Half-Life	872
30–10	Decay Series	873
30–11	Radioactive Dating	874
*30–12	Stability and Tunneling	876
30–13	Detection of Particles	877
	Questions, MisConceptual Questions	879–81
	Problems, Search and Learn	881–84

31 NUCLEAR ENERGY; EFFECTS AND USES OF RADIATION 885

31-1	Nuclear Reactions and the Transmutation of Elements	885
31-2	Nuclear Fission; Nuclear Reactors	889
31-3	Nuclear Fusion	894
31-4	Passage of Radiation Through Matter; Biological Damage	898
31-5	Measurement of Radiation—Dosimetry	899
*31-6	Radiation Therapy	903
*31-7	Tracers in Research and Medicine	904
*31-8	Emission Tomography: PET and SPECT	905
31-9	Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI)	906
	Questions, MisConceptual Questions	909–10
	Problems, Search and Learn	911–14

32 ELEMENTARY PARTICLES 915

32-1	High-Energy Particles and Accelerators	916
32-2	Beginnings of Elementary Particle Physics—Particle Exchange	922
32-3	Particles and Antiparticles	924
32-4	Particle Interactions and Conservation Laws	926
32-5	Neutrinos	928
32-6	Particle Classification	930
32-7	Particle Stability and Resonances	932
32-8	Strangeness? Charm? Towards a New Model	932
32-9	Quarks	933
32-10	The Standard Model: QCD and Electroweak Theory	936
32-11	Grand Unified Theories	939
32-12	Strings and Supersymmetry	942
	Questions, MisConceptual Questions	943–44
	Problems, Search and Learn	944–46

33 ASTROPHYSICS AND COSMOLOGY 947

33-1	Stars and Galaxies	948
33-2	Stellar Evolution: Birth and Death of Stars, Nucleosynthesis	951
33-3	Distance Measurements	957
33-4	General Relativity: Gravity and the Curvature of Space	959
33-5	The Expanding Universe: Redshift and Hubble's Law	964
33-6	The Big Bang and the Cosmic Microwave Background	967
33-7	The Standard Cosmological Model: Early History of the Universe	970
33-8	Inflation: Explaining Flatness, Uniformity, and Structure	973
33-9	Dark Matter and Dark Energy	975
33-10	Large-Scale Structure of the Universe	977
33-11	Finally . . .	978
	Questions, MisConceptual Questions	980–81
	Problems, Search and Learn	981–83

APPENDICES

A	Mathematical Review	A-1
A-1	Relationships, Proportionality, and Equations	A-1
A-2	Exponents	A-2
A-3	Powers of 10, or Exponential Notation	A-3
A-4	Algebra	A-3
A-5	The Binomial Expansion	A-6
A-6	Plane Geometry	A-7
A-7	Trigonometric Functions and Identities	A-8
A-8	Logarithms	A-10
B	Selected Isotopes	A-12
C	Rotating Frames of Reference; Inertial Forces; Coriolis Effect	A-16
D	Molar Specific Heats for Gases, and the Equipartition of Energy	A-19
E	Galilean and Lorentz Transformations	A-22

Answers to Odd-Numbered Problems

Index	A-43
Photo Credits	A-69