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Abstract. Isoprostanes are prostaglandin-like compounds that are produced by free radical mediated peroxidation of
polyunsaturated fatty acids. There is a direct evidence showing that F2-isoprostanes can be utilized as a marker of lipid
peroxidation due to the mechanism of their formation (nonenzymatic oxidation of arachidonic acid), chemical stability,
sensitive and non-invasive methods of their estimation. An altered generation of F2-isoprostanes has been found in a vari-
ety of pathological syndromes associated with oxidative stress. Their quantification allows to elucidate the role of free rad-
icals in oxidative injury. This paper reviews briefly the recent data on isoprostanes: biochemical mechanisms of their for-
mation, methods of their measurement, and the possibilities of their utilization as a quantitative/qualitative marker of
oxidative stress in vivo.
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INTRODUCTION

Numerous pathological processes involve free radical
mediated oxidative stress. The elaboration of reliable, and
non-invasive methods for the assessment of oxidative
stress in human body is one of the most important steps
towards recognizing the variety of oxidative syndromes
presumably produced by reactive oxygen species (ROS).
Lipid peroxidation is one of the most common features
associated with oxidative stress, and the measurement of
lipid peroxidation products has been used  to evaluate
oxidative stress in in vivo conditions [1]. The assessment of
primary end-products involves the measurement of conju-
gated dienes and lipid hydroperoxide, while the quantifi-
cation of secondary end-products includes thiobarbituric-
reactive substances, gaseous alkanes and prostaglandin
F2-like products, termed F2-isoprostanes (F2-iPs) [2,3,4].

Recently, F2-iPs have been regarded as the most valuable,

accurate and reliable marker of oxidative stress in vivo and

their quantification is recommended for assessing oxidant

injuries in humans.

The purpose of this paper is to provide some information

on biochemistry of isoprostanes and their utilization as a

marker of oxidative stress.

A NOMENCLATURE SYSTEM FOR ISOPROSTANES

An increased interest in biological activity of isoprostanes

and in their role as a possible marker of oxidative stress,

as well as the first attempts to synthesize them chemically

have created the need to introduce a new, clear nomen-

clature. Rokach et al. [5] proposed to use iP as a symbol

assigned to isoprostanes, and the letters D,E,F,G and H,
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which correspond with the prostaglandin (PG) nomencla-
ture, as indicative of the type of cyclopentane ring. In fur-
ther description, they suggested to use: the numbers: 1, 2,
3, 4 or 5 written in subscript to correspond with the num-
ber of double bounds; prefix α or β to indicate the spher-
ical localization of hydroxyl groups  in cyclopentane ring;
and Roman numerals from I–VI referring to the six types
of isoprostanes derived from eicosapentaenoic acid and
four types  from arachidonic acid (AA) (III–VI) (Fig. 1).
For example, for two most often investigated iso-
prostanes, previously named 8-epiPGF2α or 8-isoPGF2α
and iPF2α-I, the new nomenclature reads as follows:
iPF2α-III and iPF2α-VI.

THE MECHANISM OF  ISOPROSTANES

FORMATION

As mentioned earlier, polyunsaturated fatty acids (PUFA)
in the presence of ROS are the main source of iso-
prostanes. Peroxidation of AA leads to formation of 4
regioisomers of F2-iPs [6]; eicosapentaenoic acid is pre-
dicted to lead to the generation of 6 regioisomers of

F3-iPs [7], α-linolenic and γ-linolenic acids to two regio-
isomers of E1- and F1-iPs, respectively [8,9]; and decosa-
hexaenoic acid to 8 regioisomers of D4-iPs and 8 regioiso-
mers of E4-iPs [10,11]. Each regioisomer comprises 8
racemic diastereomers, thus providing a large number of
forms of these compounds. 
Most of the published data on iPs concerns in particular
PGF2α-derived F2-iPs. The mechanism of their formation
involves AA peroxidation, leading to the formation of
bicycloendoperoxide, and subsequently to its reduction,
yielding finally F2-iPs. Depending on which of the labile
hydrogen atoms of AA is detached from the molecule as a
first after the action of ROS, 64 different isoforms of F2-
iPs are formed.  Due to their structural similarities, they
were grouped into 4 types of regioisomers. The structure
shows that two alkile chains are always bound to F-ring in
cis position, whereas in prostanoids they occupy trans
position [12] (Fig. 2).
The formation of D- and E-iPs has already been con-
firmed also in in vivo conditions where they may accumu-
late, reaching the levels found for iPF2α–III [11].
Over many years it has been considered that F2-iPs are
formed independently from  cyclooxygenase (COX).
However, not long ago it was shown that COX may par-
ticipate in the formation of the F2-iPs isoforms – iPF2α–III
[13] (Fig. 2).
Cyclooxygenase is the first enzyme in the pathway that
leads to the formation of prostanoids and thromboxanes

Fig. 1. Molecular structures of prostaglandin F2 and corresponding iso-
prostane (A) and their nomenclature (B) [5].

Fig. 2. Free radical and cyclooxygenase catalysed metabolism of AA to
prostaglandins and F2-isoprostanes, respectively.
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from AA [14]. There are two isoforms of this enzyme,
COX-1 – present in a majority of cell types, and COX-2 –
a restriction enzyme, present in tissues at very low levels.
COX-2 is easily inducible by mitogens or during inflam-
mation [15]. Recently, it has been shown that (contrary to
other iPs) iPF2α–III may be formed by activation with col-
lagen, thrombin, or arachidonate of platelet COX-1 [13].
In vivo studies show however, that this biosynthesis path-
way does not play an important role in the formation of
iPF2α–III since nonsteroid anti-inflammatory drugs do
not lower the level of iPF2α–III, as measured in the urine
of healthy subjects [16]. Other authors [17] showed that
iPF2α–III may be formed in activated monocytes by COX-
2. Thus the hypothesis  that formation of iPF2α–III in vivo
is the result of nonenzymatic peroxidation of AA needs
further studies [17]. 
Although mechanisms of F2-iPs release from cell mem-
branes are not understood well enough, it is already
known that they are formed at the site of inflammation
where ROS affect AA before its release from ester bind-
ings of phospholipid membrane. Subsequently, in
response to cell activation presumably by phospholi-
pase(s), F2-iPs are released to circulation and ultimately
secreted with urine [18].  

METABOLISM OF ISOPROSTANES

The information about F2-iPs metabolism is scarce.
Studies of rats showed that halftime elimination of
iPF2α–III from plasma was 16 min. Twenty percent of
radioactivity was detected in urine after administration of
radioisotope labeled iPF2α–III to monkeys or human vol-
unteers. This radioactivity was associated with the
metabolite of iPF2α–III – 2,3-dinor-5,6-dihydro-iPF2α–III
[6]. There was linear correlation between concentrations
of the metabolite and the levels of iPF2α–III in plasma [6].
Further studies by Chiabrando et al. [19] also showed the
presence of 2,3-dinor- iPF2α–III metabolite. The proxi-
mate estimations of the concentrations of both metabo-
lites in urine showed the correlation with the levels of
iPF2α–III in plasma. 

Thus the measurement of metabolites of iPF2α-III in
urine could be regarded as a method for the estimation of
total levels of endogenic iPF2α-III in human subjects.
However, the lack of scientific data on whether F2-iPs in
urine comes only from filtrated blood plasma and not
from other sources prevents the correct interpretation of
data obtained with this method. Data from the studies of
PG biosynthesis shows, for example, that unmetabolised
eicosanoids present in urine are synthesized in kidneys
[20,21].

F2-ISOPROSTANES – A BIOACTIVE PRODUCT  OF
LIPID PEROXIDATION USED AS A MARKER OF
OXIDATIVE STRESS

Numerous studies have shown that quantitative measure-
ment of iPs formed during oxidative stress can be used as
a significant marker of prooxidative status during patho-
genesis of different diseases and in response to  toxic sub-
stances exposure.
Evidence from in vitro studies. The evidence that iso-
prostanes can be utilized as a marker of lipid peroxidation
were shown in several different in vitro experiments. 
Lipid peroxidation induced in the system dependent on
Fe/ADP/ascorbate in microsomal fraction of the rat liver
results in formation of iPF2α-III and malondialadehyde.
The increased concentration of these two metabolites
during peroxidation correlates with decreased AA levels
and the increased oxygen [22]. The role of iPF2α -III as a
marker of oxidation was also shown in the studies, in
which blood plasma low density lipoproteins (LDL) were
oxidized with Cu2+, or the water soluble oxidizing agent
2,2-azo-bis-2-amidinopropane. This peroxidation resulted
in increased levels of iPF2α-III and lipid hydroperoxide.
However, this effect occurred only at low levels of ascor-
bate and ubiquinol-10, known antioxidant factors [23]. In
conditions that resemble cellular inflammatory reactions,
Pratico et al. [24] observed significant increase in iPF2α-
III concentrations after LDL exposure to zymosan-stimu-
lated macrophages. A dose-dependent increase in levels
of iPF2α-III were also observed after LDL exposure to
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peroxynitrite. It also correlated with the increased elec-
trophoretic mobility of LDL fractions [25].
Evidence from in vivo animal studies. Several in vivo stud-
ies show clear evidence of the role of iPs as an indicator of
oxydo-redox reactions. In some of these studies a signifi-
cantly increased concentration of F2-iPs esters in the rat
liver was observed during the first hour after the challenge
with hepatotoxic dose of CCL4. The increase in this
metabolite showed incremental tendency for the next 24 h
[26,27]. Blood plasma concentrations of esters and iPs
reach maximal levels 4-8 h after the administration of
CCl4 and are dose-dependent [27]. 
The increased F2-iPs was observed after the administra-
tion of agents, such as izoniazid or phenobarbital com-
pounds that induce microsomal enzymes, which in turn
enhance the metabolic rate of CCL4 and decrease the glu-
tathion deposits [27]. Antioxidants, like lazaroid U78517
or cytochrome P-450 inhibitor (4-methylpyrazole or
SKF525A) inhibit CCL4-induced synthesis of F2-iPs
[27,28]. 
Utilizing a similar experimental model, the levels of mal-
ondialdehyde in the liver were estimated. An eighty-fold
increase in F2-iPs was observed, while malondialdehyde
concentration was elevated by only 2.5 times [22].
Deleterious effects of dipyridil herbicides such as
paraquat or diquat are related to their metabolism. These
compounds enter the metabolic redox cycles and produce
large amounts of ROS. In consequence, the rats suffer
from the liver and kidney damage, which is more severe in
animals deficient in selenium (Se), an element essential
for glutathione peroxidase and other anti-oxidant proteins
[29]. The administration of diquat to Se deficient rats
caused 100–200-fold increase in the liver and kidney
derived F2-iPs formation [29].
Rats fed with food lacking in Se and vitamin E lowered
their body weight and often died because of massive liver
necrosis. The in vitro studies showed the role of vitamin E
in inhibition of lipid peroxidation, which suggested that
this process may be the main cause of massive liver necro-
sis. The levels of F2-iPs in the blood plasma and tissues of
these animals were 6-fold higher than those in control
group. In the liver, lungs, kidneys, heart and skeletal mus-

cles there were found significantly increased levels of
esterified form of F2-iPs [26,30]. 
The role of oxidative stress in the ethanol-induced liver
injury was shown both in humans [31] and in experimen-
tal animals [32]. The induction of isoenzyme CYP4502EI
by ethanol leads to the formation of ROS and increased
lipid peroxidation [32]. The causative relation between
enhanced lipid peroxidation and liver damage was con-
firmed in the animal model studies by Nanji and French
[8]. Lipid peroxidation was estimated using the method of
”conjugated dienes” measurement [33], or by F2-iPs esti-
mation in  plasma and tissues [34–37]. 
Evidence from in vivo human studies. The increased lev-
els of iPs in urine were observed in subjects with chronic
liver injury due to ethyl alcohol consumption. The levels
of iPF2α-III were significantly higher in subjects with liver
cirrhosis induced by former alcohol consumption than in
subjects suffering from this disease induced by Hepatitis C
virus infection [31]. Furthermore, increased levels of iPs
released to urine (iPF2α-III, -VI and 2,3-dinor-5,6-dihy-
dro-iPF2α-III metabolite) correlated with the severity of
alcohol-induced liver disease and tended to increase in
dose-dependent manner in healthy subjects  [31].
Tobacco smoke contains large amounts of ROS able to
induce oxidative damage of many important biomolecules
[38]. Oxidative modifications of deoxyribonucleic acids, as
well as low density  lipoproteins can lead to tumor or ath-
erosclerosis. To investigate the effect of tobacco smoke on
the induction of oxidative stress, Morrow et al. [39] meas-
ured the levels of free and lipid ester bound forms of
F2–iPs in blood plasma and urine. The levels of both
forms of iPs in blood plasma were significantly increased
in smokers and they correlated with concentrations of
metabolites in urine. Two weeks without smoking
decreased the levels of free and lipid ester bound forms of
F2–iPs in blood plasma of smokers. The decrease in blood
plasma levels of iPF2α-III in smokers was also observed
after vitamin C intake [40]. The studies suggest that the
measurement of iPs in blood plasma and their metabolites
in urine can be utilized as a good marker of oxidative
processes induced by tobacco smoke.



23IJOMEH, Vol. 15, No. 1, 2002

F2-ISOPROSTANES BIOMARKERS OF LIPID PEROXIDATION R E V I E W  P A P E R S

Acute intoxication with paracethamol is responsible for
the liver and kidney injury by a free radical mechanism.
Circulating plasma concentrations of F2-iPs due to proox-
idative processes induced by paracethamol were 8-times
above the normal level. The authors suggest that the kid-
ney injury in paracethamol-intoxicated subjects may be
the consequence of large amounts of iPs released from
injured liver and subsequent early renal vasoconstriction
[41,42]. 
According to the present evidence cisplatin injury in renal
tubular epithelial cells is associated with lipid peroxida-
tion and elevated production of isoprostanes. It has been
revealed that platinum bound chlorine molecules in cis
position readily exchange between nuclofilic molecules
and lead to decreased intracellular concentrations of thiol
groups and thus to alterations in activity of glutathione
peroxidase and accumulation of H2O2. Further conse-
quence of these disturbances could result in lipid peroxi-
dation and iPs accumulation. Cisplatin-induced lipid per-
oxidation may contribute to renal dysfunction due to the
potent renal vasoconstrictive action of isoprostanes [43].
It is confirmed in in vitro conditions that cisplatin induces
F2-iPs formation in concentration-dependent way, and in
addition to the reaction of acetyl-cysteine (thiols donors)
inhibits this effect [43].

BIOLOGICAL ACTIVITY OF ISOPROSTANES

Several isoprostanes have been found to exert potent bio-
logical effect. This involves a receptor mediated action,
e.g. vasoconstriction or adduct formation, which is associ-
ated with their chemical property. Rats administered with
iPF2α-III showed contraction of the kidney vein smooth
muscles that was accompanied by reduced  glomerular fil-
tration and blood flow. However, these changes did not
cause alterations in blood pressure, suggesting of selective
effect of iPF2α-III on kidney vasculature [44]. IPF2α-III
was also shown to constrict pulmonary artery in rabbits
and rats [45,46], and to narrow porcine and bovine coro-
nary arteries  twice as much as PGF2α but less than
U46619 [47]. In guinea pigs, iPF2α-III administered intra-
tracheally was shown to induce dose-dependent airflow

obstruction and airway plasma exudation [48]. It was also
revealed that iPF2α-III exerts a constrictor effect on cere-
bral arteries and retinal vessels [49,50]. All these effects
are inhibited by thromboxane receptor antagonist –
SQ29548, suggesting that iPF2α-III may exert its effect
through this receptor. However, the studies on direct
binding of iPF2α-III to thromboxane receptor did not con-
firm this effect [51]. In human platelets, iPF2α-III within
the concentration range between 1 nmol/L – 1 µmol/L
changes the cell shape, as well as the release of calcium
ions from intracellular deposits and inositol phosphates
[18,24]. Furthermore, iPF2α-III in the presence of sub-
threshold doses of platelet agonists induces dose-depend-
ent platelet aggregation [24]. The ability of increased
platelet aggregation may take place at the sites, where the
increased activation and the production of iPF2α-III coin-
cide. It has also been observed that iPF2α-III indirectly
increases platelet adhesion by reduction of anti-adhesive
and anti-aggregatory activity of nitric oxide [52]. However,
in spite of the collected data, it is still unclear whether
local in vivo concentrations of iPs can reach the levels that
could significantly influence the processes of oxidative
stress.

QUANTIFICATION OF ISOPROSTANES AS A
MARKER OF OXIDATIVE STRESS 

As indicated earlier, F2-iPs are formed during ROS-medi-
ated autooxidation of AA in in vitro conditions [3]. Thus
the appropriate storage and assessment conditions have
to be taken into consideration when measuring the levels
of F2-iPs. Samples of blood plasma immediately frozen in
liquid nitrogen and stored at –80oC do not show autooxi-
dation up to 8 months. Similar precautions have to be con-
sidered when handling the solid tissue samples. It has
been shown that autooxidation processes, due to low lev-
els of AA do not significantly affect the measurements
made in urine samples; the concentrations of two differ-
ent forms of F2-iPs are not changed if the samples are left
at room temperature for 7 days [53]. The measurement of
F2-iPs metabolites also prevents from obtaining false pos-
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itive results that otherwise could be obtained by ex vivo
created artifacts. 
The materials used to measure F2-iPs and their metabo-
lites are: urine [53,54,55], blood plasma [39,55], cere-
brospinal fluid [56], expiratory air condensate [57,58],
bronchopulmonary lavage [59], tissues and blood lipid
molecules [39]. The best material of choice for measuring
the levels of F2-iPs is urine due to uninvasive method of its
collection, and the lack of artifacts and autooxidative
processes. It is still unclear whether the formation of dif-
ferent regioisomers is specific and may be attributed to
the specific oxidative processes induced by different com-
pounds. Li et al. [60] utilizing liquid chromatography (LC)
together with mass spectrometry (MS)-MS showed that
concentrations of F2-iPs–III and –VI in urine of patients
suffering from inherited homozygotic hypercholesteremia
were similar. The authors, however, did not find this cor-
relation in patients with heart failure.  
In spite of a large number of different forms of iPs, the
investigators mainly focus on two of them: iPF2α-III and
–VI [5,61–64]. Based on the measurements of these two
forms in body fluids and in tissues one can notice disregu-
lation of oxydo-reduction processes in vivo, which leads to
lipid overperoxidation due to the exposure to different
toxic substances [25,31,39–43]. Quite recently, the meas-
urement of metabolite-2,3-dinor-5,6-dihydro-iPF2α-III
has been often used as a marker of lipid peroxidation [55].
This metabolite is present in urine in higher concentra-
tions than primary iP, and reflects general in vivo lipid per-
oxidation. The measurement of this metabolite prevents
obtaining false positive results which could originate from
COX-dependent lipid peroxidation in platelets [20].
The measurement of iPF2α-III in different research labo-
ratories is carried out by employing complex procedures
of gas chromatography/negative ion chemical ionisa-
tion/mass spectrometry (GC/NICI/MS) [13,16,50,65,66],
or LC/MS [67] or GC/MS/MS [65,68] or LC/MS/MS [60].
In primary studies, Pratico [13] to measure the levels of
iPF2α-III in blood plasma used GC-MS technique involv-
ing a standard radioisotope labeled iPF2α-III. Working
together with Rokach et al. [5], he elaborated the methods

for other isomers, mainly for iPF2α-VI. The measurement
of the iPF2α-VI is superior to the measurement of other
metabolites because  it allows an easy conversion of this
compound to cyclic lactone, and thus separation from
other iPs. Furthermore, it shows better specificity towards
detection of ROS-dependent oxidative processes because
it is not formed in platelets or monocytes in the COX-
dependent way [53]. Bachi et al. [66] have described new
method for iPF2α-III isolation that utilizes immune-
exchange columns. It facilitates isolation and purification
of this iP from samples by GC/MS method [65]. However,
columns need to be replaced with new antibodies and
show restricted period of time in which they can be used.
Procedures described above, due to their complexity and
equipment required, can be performed only in specialized
laboratories. Large scale clinical studies can employ only
immunochemical methods [16,69].
Commercially available kits for the measurement of
iPF2α-III or iPF2α-VI and their metabolites in urine
include enzyme linked assays (EIA) [16,70,71] or radioiso-
tope immuno assays (RIA) [72].
However, several articles report that the concentrations of
iPs measured by means of immunochemical methods or
GC/MS are different [16,73]. Investigations by Bessard et
al. [74] confirm this observation, however, they indicate
high values of correlation coefficient (0.863) and standard
deviations, which suggests that none of these methods
measured the same metabolites. The presence of a large
number of regioisomers makes for the existence of cross-
immunoreactivity of the antibodies utilized in EIA tech-
niques and for yielding false results. As a consequence,
comparison of clinical data using GC/MS and EIA should
be avoided.

CONCLUSIONS

The discovery of iPs, nonenzymatic products of lipid per-
oxidation, provided a new possibility of assessing the role
of ROS in human physiology and pathophysiology. The
elaboration of credible methods for the quantitative
measurement of iPs and their metabolites as a marker of
in vivo prooxidative processes in easily accessible material
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is a significant progress towards the recognition of the role
of ROS in the pathogenesis of various diseases and  the
assessment of  the effects of toxic substances on the
human health. 
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