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The A pplication of the H a rd y  C ross M ethod  
of M om ent D istribu tion

By H. A. WILLIAMS,1 STANFORD UNIVERSITY P. O., CALIF.

This paper presents the basic principles o f the Hardy 
Cross m ethod o f analyzing continuous fram es by d is­
tributing fixed-end m om ents and illu strates the appli­
cation of the m ethod to various types o f structures, in ­
cluding an  elevator spar with supports on a line, the sam e 
spar with deflected supports, and an  airplane fuselage 
truss with loads between panel points.

FOR years, structural engineers have 
been searching for a simple method 
of determining stresses in statically 

indeterminate structures. The Maxwell- 
Mohr, least-work, and slope-deflection 
methods have been employed to a large 
extent, but the laborious computations 
involved, together with the tendency for 
small errors to accumulate, have dis­
couraged their use.

In May, 1930, Prof. Hardy Cross, of the 
University of Illinois, presented in the 

Proceedings of the American Society of Civil Engineers a paper 
entitled, “Analysis of Continuous Frames by Distributing Fixed 
End Moments.” 2 The method proper was one of successive 
approximation involving only the simplest arithmetic and 
eliminating the use of simultaneous equations. The widespread 
discussion which followed would seem ample proof of the pro­
fession’s interest in this method. Professor Cross purposely 
limited his paper to definitions and to a brief illustration and 
discussion of the application of the method to one type of frame. 
He also suggested other possible applications, many of which 
have been covered in subsequent discussion.

Due to the brevity of the original paper, it seems desirable that 
a more detailed presentation be made in which emphasis should 
be placed on the correlation between moment distribution and 
the physical action of a structure. The writer has attempted to 
accomplish this by simple illustrations, while explaining the 
basic principles.

Only a few practical applications to aeronautical problems 
have been given in this paper. But it is felt that familiarity with 
the basic principles should enable the airplane designer to apply 
the method to his special problems without difficulty.

The author is very much indebted to Prof. A. S. Niles for the

1 Department of Civil Engineering, Stanford University. Mr. 
Williams was graduated from Stanford University in 1925, and then 
entered the employ of the Standard Oil Company of California as 
draftsman and structural designer, where he remained until 1930. He 
then returned to Stanford as a graduate student and teaching assistant 
in civil engineering. Since 1931 he has been an instructor. Mr. 
Williams received his engineer’s degree from Stanford, specializing 
in structural engineering.

2 Since published, with all discussion, in Trans. Am.Soc.C.E., 
vol. 96, 1932, p. 1.

Contributed by the Aeronautic Division of T h e  A m e r i c a n  So­
c i e t y  op M e c h a n i c a l  E n g i n e e e s  and presented at the Pacific 
Coast Aeronautic Meeting, University of California, Berkeley, Calif., 
June 9-10, 1932.

Note: Statem ents and opinions advanced in papers are to  be
understood as individual expressions of their authors, and not those 
of the Society.

criticisms and suggestions tha t he has given. Numerous features 
of the paper have been instigated by him.

D e f i n i t i o n s

In order to clarify the immediate discussion of the Hardy 
Cross method, the sign conventions and four terms will be de­
fined as follows:

(1) Fixed-end moment is the moment which would exist a t the 
ends of a loaded member if those ends were held rigidly against 
rotation. This is in accord with the ordinary usage for beams 
ending in heavy walls.3

(2) Unbalanced moment is numerically equal to the algebraic 
sum of all moments at a joint. The joint is balanced when the 
sum of the moments equals zero.

(3) Stiffness as herein used “is the moment at one end of a 
member (which is on unyielding supports at both ends) necessary 
to produce unit rotation of that end when the other end is fixed.” 4 
For a straight beam of constant section, the stiffness is propor­
tional to the moment of inertia divided by the span length—
i.e., the usual K  = I /L  used in the slope deflection method. Of 
course, the relative rather than the actual values of K  can be 
used in computations.

(4) Carry-over factors result from the fact that if a beam simply 
supported at one end and fixed at the other is acted on by a bend­
ing moment at the simply supported end, a certain moment is 
induced at or “carried over” to the fixed end. The ratio of the 
moment at the fixed end to the bending moment at the simply 
supported end is called the “carry-over factor.” I t  is +  y 2 for 
straight beams of constant section.5

(5) The sign conventions used in this paper are as follows: 
A clockwise moment couple acting on the end of a member is 
positive; a counter-clockwise moment couple is negative. If, 
a t a joint, the tangent to the elastic curve of a member rotates 
through a clockwise angle, the rotation is positive. Hence, a 
positive moment acting on the end of a member causes a positive 
rotation.6

B a s i c  P r i n c i p l e s

I t will be recalled that, in the analysis of statically indetermi­
nate structures, various temporary expedients are resorted to in 
order to obtain the moments and stresses in the members. Re­
dundant members are assumed to be cut or a fixed or partially 
restrained joint is taken as hinged, and the resulting statically 
determinate structure is analyzed for this condition. Then 
certain external forces or moments are assumed to come into

8 See Appendix B for fixed-end moments for beams with various 
types of loading.

4 Quoted from Hardy Cross paper. See Trans. Am.Soc.C.E., 
vol. 96, 1932, p. 2.

s See footnote 10.
6 The sign conventions adopted here are the same as those used 

by Messrs. Wilson, Riehart, and Weiss in “Statically Indeterminate 
Structures,” Bulletin 108, University of Illinois, Engineering Experi­
ment Station. They also are used by Sutherland and Bowman in 
their text, “Structural Theory.” Note that these sign conventions 
bear no relation to the signs used in ordinary design, and hence are 
not the same as those used in the original paper by Hardy Cross. 
See Appendix A for more extensive definitions of sign conventions.
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action and draw the cut member together or return the hinged 
joint to the restrained condition, and the same statically deter­
minate structure is separately analyzed for the effects of the 
latter forces or moments. The principle of superposition7 is 
assumed to apply, and results of the separate analyses are 
added algebraically to determine the final stresses. The pro­
cedure involves the application to the structure of certain arbi­
trary restraining forces or moments. These forces or moments 
are later removed, leaving the frame acted on by the original 
loads. The arbitrary restraints can be removed and re-applied 
any number of times as long as in the end the true force system 
prevails.

Consider, for illustration, a simple beam uniformly loaded. 
By fixing or restraining the ends, which are normally free to 
rotate, we can prevent the beam from sagging as far as it ordi­
narily would when similarly loaded and resting on knife-edged 
supports. If we now release the restraint at one end only, 
further deflection will take place; and the subsequent removal of 
the restraint at the other end will allow the beam to sag to its 
final position. In this case only two steps are involved. How­
ever, by alternately releasing and fixing the ends, the beam could 
have been lowered to its final position in as many stages as was 
desired. Each stage would have resulted in certain changes in 
the end moments of the beam. By the principle of superposi­
tion, the effects of all of these separate changes could be added 
algebraically to determine the final moments. Obviously, this 
summation would be zero for the end moments of this particular 
structure.

I l l u s t r a t i o n ,  S i m p l e  B e a m  o p  O n e  S p a n

Suppose, in order to make the foregoing example more spe­
cific, we follow through in detail the steps suggested, using 
Figs. 1 to 9 to help in visualizing the physical action which takes 
place.8

(1) Fig. 1: We have the simple beam AB  resting on unyield­
ing knife-edged supports. The uniformly distributed load has 
not yet been applied.

(2) Fig. 2: I t  is assumed that before the load is applied, the 
ends are fixed by casting a heavy imaginary wall around the 
beam at each end.

(3) Fig. 3: The load is assumed to be applied. By well- 
known methods,’ the end moments are found to be —W L / 12 
a t A  and +TFL/12 a t B  as shown. By definition, these are 
“fixed-end moments.”

(4) Fig. 4: The restraint at A  is removed. As a result:
(a) The moment of —W L / 12 a t A is entirely released. This 
effect is the same as though a new external moment of + W L / 12 
had been exerted at A. Hence, adding +1VL/12 to the previous 
—W L /\2  gives zero, the new moment at A. (b) I t  is obvious 
from the figure that the action of the external moment ( + W L /12) 
at A  caused additional strain or moment to be set up at B, the 
far end of the beam. This is the “carry-over” moment from A 
to B. I t  is equal to + V 2 X +WL/YZ = -\-WL/24.10 The net 
moment at B  is now +  W L /8, as would be expected.11

7 The principle of superposition states that the total effect of a 
number of loads on a structure is the same as the sum of the effects 
of each load when separately applied. It is only approximately 
true for combined bending and compression.

* Since we are concerned only with moments at this time, no shears 
or support reactions will be shown in Figs. 1 to 9.

• That is, by theorem of three moments, moment areas, or slope 
deflection. Moments for fixed-ended beams of one span can also 
be found in any handbook.

10 The ratio +  V 2 is the carry-over factor for a straight beam of 
constant section. See Appendix B for derivation.

11 The foregoing moments for a beam fixed at one end and hinged
at the other can be checked from any handbook.

(5) Fig. 5: Joint A 12 is assumed fixed in its new position.
(6) Fig. 6: Joint B is released; i.e., an external moment of 

—W L/S  is applied, thus canceling the previously existing mo­
ment of +TFL/8. The beam sags still further and sets up a strain 
a t the fixed end A. That is, a moment of + ' / j  X —W L /8 = 
—W L /16 is carried over to A  and added to the existing moment, 
which is zero.

(7) Fig. 7: Joint B is again fixed.
(8) Fig. 8: Joint A is released, leaving zero moment at A 

and a carry-over moment of -[-WL/32 at B.
(9) Fig. 9: If we now decide arbitrarily to release B without

12 In this paper, the term “joint” will be used not only to describe 
the point of intersection of the axes of two or more members as in a 
truss, but also to refer to the intersection of the axis of a beam and the 
center line of a support.
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first fixing A, as was previously done, we can do so, and the beam 
reaches its final sag with zero moment at each end.

Inspection shows that each step brought us closer to the true 
condition for the loaded beam. Each time a moment was added 
due to a change in position of the beam, the added value was 
smaller than before, since the carry-over factor was + 1/*. The 
principle of superposition was applied at each step in that the 
new moment was added to the existing moment before proceeding 
to the next step.

The foregoing example is of course extremely simple. Since 
the beam is of one span only and the ends are both hinged, it 
can be allowed to deflect to its final position at any time by simply 
releasing all restraining moments and allowing both end moments 
to become zero. However, this can be done only because both 
ends actually are hinged and we know that the final end moments 
must equal zero. In even a slightly more complicated structure, 
such as a continuous beam on three supports, the situation is 
different. Certain moments will exist a t the interior ends of the 
spans when the structure reaches its final state of equilibrium. 
The magnitudes of these moments are unknown as a rule. Hence, 
the moment over the middle support resulting from releasing both 
end joints at once will not equal the actual final moment except 
by coincidence.

I l l u s t r a t i o n , C o n t i n u o u s  B e a m

Let us now follow through the analysis, in the same general 
manner as before, of the continuous beam shown in Fig. 10. 
The cross-section is constant throughout, and all spans are of 
equal length. The supports are assumed as unyielding. The 
only external force is the load P on the end of the overhang. 
Moments are designated in the usual fashion. Mab is the 
moment in beam A B  a t end A; Mba is the moment in beam AB  
at end B.

Assume that, before the load P is applied, all joints are fixed 
against rotation. This fixity can be thought of as being effected 
by casting a heavy wall around the beam at each support. Under 
these circumstances, the only immediate result of applying the 
load P  is that a fixed-end moment (Mao = +1000 ft-lb) is set 
up in the cantilever. All other moments equal zero. From this 
point, the procedure is as follows:

(1) Balance joint A: Suppose joint A is now released; i.e., 
the wall is assumed replaced by a knife-edged support. If

= Mao +  Mab = 0, the joint would be in equilibrium and 
no rotation would take place. However, SM = +1000 +  0 
=  +1000, which means that an unbalanced moment of +1000 
exists at the joint for an instant after the wall is removed. 
While the joint was fixed, this moment was resisted by the wall. 
After release, it must obviously be resisted by an equal and 
opposite moment in the beam. Hence, the release and subse­
quent rotation of the joint causes no change in Mao, but adds 
a —1000 to Mab. This value is written as shown in Fig. 12. 
Joint A is now said to be balanced, since ~ZM = 0.

(2) Carry-over moment to joint B: The balancing of joint 
A actually amounted to applying a moment of —1000 to end A 
of beam AB. This ■—1000 deflected the center of the beam up­
ward (Fig. 12) and also caused a moment to be “induced a t” 
or “carried over” to Mba, since joint B  was fixed against rota­
tion. This moment change at Mba is equal to +V> X —1000 
= —500.

(3) Joint A is assumed fixed in its new position.
(4) Balance joint B: I t  will be noticed that this joint differs 

from any encountered so far in that its rotation affects and is 
affected by a beam on each side. The instant after joint B  is 
released, the unbalanced moment is Mba +  M u  = —500. 
In order that the moments on each side of the joint will be equal 
and opposite, the equilibrant of the unbalanced moment of

—500 must be distributed to each beam so tha t the equation 
XM =  0 is satisfied. That is, the joint rotates clockwise, re­
lieving Mba of some moment and adding an equal amount to 
Mbc-13 If Mba is relieved by +250 and the same amount is 
added to Mbc:

Mba -500 +  250 = —250

13 Thia is true only when 1/L  is the same for the member on each 
side of the joint. Also, one-half is given to each member only when 
there are but two members coming into the joint. For further de­
velopment and discussion of balancing moments at joints, see under 
heading, “Effect of Rigidity on Distribution of Moments at a Joint.”
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Hence, the equation of equilibrium for the joint is satisfied by 
distributing a moment equal to one-half the unbalanced moment 
and of opposite sign to the member on each side of the joint. 
In this case, the changes in Mba and Mbe are recorded as shown 
in Fig. 13; but at this time the new values will not be added 
to the moments (Mba = —-500 and Mbc = 0) already existing.

(5) Carry-over moment to joints A  and C: The balancing 
of joint B  amounted to applying new moments of +250 at 
Mba and Mu- Hence, a moment of + y 2 X 250 =  +125 
must be carried over from Mba to Mab and from Mbc to M cb.

(6) Joint B  is assumed fixed in its new position.
(7) Balance joint C: The unbalanced moment at this joint 

is +125. The procedure of releasing and balancing is the same 
as for joint B  in step (4). The results are shown in Fig. 14.

(8) Carry-over moment to joints B and D: Procedure same 
as in step (5). Carry-over moments are —31.25 to Mbc and 
—31.25 to Mdc, as shown in Fig. 14.

(9) Joint C is assumed fixed in its new position.
(10) Balance joint D: This joint is actually fixed and cannot 

be released. Hence there is no unbalanced moment to be dis­
tributed and the carry-over moment to Med =  0.

We have now completed one cycle and can return to joint A  
and follow through the same procedure from A  to D again. I t 
will be noticed that, when the joints are now released, the un­
balanced moments are the algebraic sum of the carry-over 
moments from the preceding cycle. That is, the unbalanced 
moment a t A  (Fig. 15) is the +125 carried over when joint B  
was balanced in Fig. 13. The unbalanced moment a t B  (Fig. 
16) is the algebraic sum of —-31.25 carried over when joint C 
was balanced in Fig. 14, and —62.50 carried over when joint A  
was balanced in Fig. 15. The total is —93.75. To balance the 
joint, a +46.875 must be distributed to each member.

In this example, the computations are carried through three 
cycles. In each step, only the moments resulting from that 
particular change are recorded. The final moment at any 
joint must equal the fixed-end moment with which we started, 
increased or decreased by the various moment increments re­
sulting from the separate steps. The totals are as shown in 
Fig. 18. Further cycles would bring the moments on either side 
of a support into closer agreement. Inspection of the results 
indicates tha t it is not necessary to follow the exact procedure 
used. I t  is more practical to use the method and form of com­
puting shown in Fig. 19. The fixed-end moments are first

written for all joints—step (a) in the figure. As previously 
explained, all fixed-end moments are zero in this case, except on 
the cantilever. Joint A  is then balanced and a —-1000 distributed 
to the right of the support and zero to the left—step (6). The 
carry-over moment to B  is not recorded at this time. Joints
B, C, and D are balanced next, thus completing step (6). Since 
the fixed-end moments at these joints are equal to zero there is 
nothing to distribute. A line is drawn under the value obtained 
from step (6). These lines do not necessarily signify an 
addition; they are merely convenient marks to indicate that the 
joint is in balance. At this stage the sum of the moments on 
either side of a joint should equal zero since the carry-over mo­
ments have not yet been computed. The carry-ov er moments re­
sulting from step (6) are now computed for all joints, and the 
values are recorded under the lines—step (c). After this step, cer­
tain joints are out of balance, so step (6) is repeated and the 
second set of lines drawn. Thus steps (c) and (6) are repeated 
as many times as desired. In the illustration, the computations 
are carried through six cycles before the columns are added to 
obtain the total moments—step (f). A simplified attack involv­
ing fewer computations for this type of problem will be illus­
trated later.

The reader might a t this point question the correctness of 
computing the total moments after balancing joints rather than 
after recording carry-over moments. While the latter way would 
be more nearly correct, the quantities involved are small in any 
event. The method used in the illustration has the advantage 
that an exact check can be obtained; i.e., the sum of the moments 
on each side of a joint equals zero. This check obviously does 
not apply to joint D.

The foregoing examples illustrate the application of the Hardy 
Cross method to very elementary structures. To summarize: 
A structure is taken without any external loading; all joints, 
including those normally free to rotate, are assumed as fixed 
against rotation; the external loads are then applied, and the 
resulting fixed-end moments are computed by well-known 
methods. In succession, each joint is released, allowed to rotate 
as far as it can, and then fixed again in its new position. This 
rotation allows the moments to balance at the joint which is 
released, but further adds to the unbalance of the joint at the 
far end of each rotated member. I t  is analogous to making 
several adjustments to a machine where a change in any one 
adjustment throws the others out again. The closer the struc­
ture gets to its final deformed state, the smaller the rotations and, 
hence, the smaller the carry-over moments causing unbalance at
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adjacent joints. The general method is one of assuming the 
structure to deflect to its natural loaded position through a series 
of steps. Each step is paralleled by a computation of the 
moments needed to balance the joints released and the resulting 
carry-over moments imposed on adjacent joints. The moment 
changes at each step are evaluated before proceeding to the next 
step. By the principle of superposition, the results of the various 
steps are added algebraically to determine the final moments. 
The accuracy of these final moments depends on the number of 
steps or cycles used in the computations.

The general physical action upon which the Hardy Cross 
method depends is aptly illustrated by a building frame as shown 
in Fig. 20. All joints of the frame are free to rotate if desired, 
but it is assumed that they are fixed as far as translation in any 
direction is concerned. Suppose a moment acts on joint 1 when 
all other joints are assumed as fixed against rotation as well as 
lateral movement. As a result, certain fixed-end moments are 
set up at 2, 3, 4, and 5 due to the carry over from joint 1. These 
carry-over moments will be unbalanced moments at the instant 
these joints are released. If all joints except 2 are now fixed, 
and joint 2 is released to tha t 2Mi — 0, this release will in turn 
cause a further spread of moment, not only to new joints, but also 
back to joint 1. The same effect will result from releasing joints 
3, 4, and 5 in turn. I t  will be noticed that the releasing of joints
2, 3, 4, and 5 affects some joints in common (Fig. 21).

If joint 10 (Fig. 22) is now released, joints 2 and 3 are affected, 
as well as some new joints. Hence, it might be said that as the 
wave spreads out from the origin, it not only affects new joints in 
its path, but it also affects the joints in its wake. As it recedes 
from the point of origin, its intensity decreases until it “dies out.” 
A new wave of less intensity now moves out from the origin, 
leaving still smaller moments in its wake. Successive waves 
grow smaller until their effect is practically negligible.

E f f e c t  o p  R i g i d i t y  o p  M e m b e r s  o n  J o i n t  R o t a t io n

I t has been stated under “Definitions” that the stiffness or 
rigidity of a straight beam of constant section is proportional to 
the moment of inertia divided by the span length. That is, the 
value of K  = I / L  is an index of rigidity.

I t will be recalled that the continuous beam used for illustra­
tion, was of constant section and that the spans were of equal 
length. Hence the value of K  was the same for all members. 
Also, in balancing joint B (see item 4 under heading “Illustra­
tion, Continuous Beam”) it was stated that the equation of 
equilibrium for the joint was satisfied by distributing a moment 
equal to minus one-half the unbalanced moment to the member 
on each side of the joint. However, it should be observed that 
this was true only because the beams on either side of joint B 
were equally stiff. Since Kba — Ku, the distribution was ac-

Kb Kb
tually in the ratio of —-------—  Mu = M u = \M U,

Kba H” Kbc 5&Kba
where M u is the unbalanced moment. If Kba = 2 and
Kbe = 3, the amount distributed to Mba and Mbc would be

2 2 3 3
-  = -  and ——— = -, respectively. That is, the distribu-

Z  ~ r  O  O  2 i -T~ o  o

tion of the unbalanced moment to the members was in propor­
tion to their relative rigidities.

The physical effect of relative rigidity can best be seen by 
following through the various steps illustrated in Figs. 23 to 28.

Fig. 23 shows a two-span continuous beam with a load P  on 
one span, a knife-edged support at B, and fixed at ends A and C. 
The knife-edge is assumed to have no restraining effect on joint 
B so far as rotation is concerned. Suppose joint B is assumed 
fixed while the load P  is being applied and is then released—■ 
the usual procedure in the Hardy Cross method. If, as in Fig.

24, beam BC is infinitely stiff compared to beam AB, obviously 
there will be no rotation at joint B when the fixity is removed 
and the moment Mba will be the same as the original fixed-end

moment. If, as in Fig. 25, beam BC is less rigid but still rela­
tively stiff as compared to AB,  some rotation of B  will take 
place upon release and the resulting moment Mba will be less



310 TRANSACTIONS OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

E  is a constant, if both spans are of the same material, and if we 
let 11/ / - 1 - A'i and I 2/L 2 =

than the original fixed-end moment. Figs. 26 and 27 show the 
effect of further reduction in the stiffness of beam BC. If, as 
in Fig. 28, beam BC ceases to exist or is of infinitely small cross- 
section, joint B^.can rotate until Mba = 0. Hence, it is seen 
that the rotation of a joint is largely dependent on the relative 
rigidities of the members common to_the joint.

E f f e c t  o f  R ig i d i t y  o n  D i s t r i b u t i o n  o f  M o m e n t s  a t  a  J o i n t

Let us now take the same beam as was used in Fig. 23, designate 
the moment of inertia and span length as shown in Fig. 29, and 
apply the first step of the Hardy Cross method—fix joint B 
and apply the load P. As a result Mbc =  0; but Mba is a fixed- 
end moment depending on the load and span length. This 
fixed-end moment is held in equilibrium by the clockwise couple 
exerted by the hypothetical wall a t B. Let us call this + M U. 
If the wall is suddenly replaced by the knife-edged support, the 
moment + M „ is momentarily unbalanced until it is removed. 
Removing a moment is the same as applying an equal and op­
posite moment. Hence, it can be considered that the unbalanced 
moment ,+M„ is removed by the application of an equal and op­
posite moment —M u- This moment rotates the tangent to the 
elastic curve of the beam through the angle dba = 8be (Fig. 30) 
and causes corresponding changes in the beam moments. Let us 
call the moment changes due to the rotation M'ba and M'bc. 
From the moment area or elastic-weights method of determining 
moments:14 dba = M 'baLi/iEI, = M'bCL2/4-EIi = 6bc, or, since

14 See Appendix B.

So as to have equilibrium at the joint after rotation (Fie. 31):

Therefore, from Equations [1] and [2]:
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Attention is again called to the fact that M'ba and M'bc are 
only the moments due to the rotation of joint B after the fixity 
is removed. The actual total moments in the two members are 
found by adding the moments M'ba and M'bc algebraically to 
the original fixed-end moments Mba and Mbc, respectively.

In so many words, the foregoing equations tell us that when a 
joint is released, a moment equal and opposite to the unbalanced 
moment is distributed to the members common to the particular 
joint in proportion to their rigidities. If the unbalanced moment 
is positive, the moments distributed will be negative, and vice 
versa.

If there are more than two members common to the joint 
released (Fig. 32), the rule still holds. That is:

M'ba =
—Ma X K„/(Ka +  Kb +  Kc +  Ki) = — Mu X Ka/XK

A p p l i c a t i o n  o f  H a r d y  C r o s s  M e t h o d  t o  a n  E l e v a t o r

S p a r

Fig. 34 shows the vertical-load curve for an elevator spar.15 
The spar will first be considered as a symmetrical continuous 
beam with five supports. A simplified attack will then be shown.

If a lV)-in. by 0.035-in. Dural tube is used, the moment of 
inertia is 0.02467 throughout, and the value of K  will be the same 
for all spans except the overhangs, where it will be zero. Hence, 
a relative value of K  = 1 is used.

All joints are assumed fixed against rotation, and the fixed- 
end moments are calculated:18

15 The author is indebted to Mr. Ben W. James, of Stanford 
University, for the numerical data used in this illustration.

11 The expressions for determining fixed-end moments can be de­
rived by moment areas or slope deflection as shown in Appendix B. 
Values for various types of loadings are given in Fig. 41.

These quantities are recorded as shown on Fig. 35, step (/). 
In accordance with the conventions given under “Definitions,” 
clockwise-resisting moment couples are positive, counter-clock­
wise couples are negative. The subsequent procedure is as 
follows:

Joint A: The instant after this joint is released, the summa­
tion of moments around the joint is +22 — 288 =  —266. To 
make the joint balance, a moment of +266 must be distributed 
to the two members in proportion to their rigidities (see heading, 
“Effect of Rigidity on Distribution of Moments at a Joint”).

Hence, distribute to AO, ^  ̂ X +266 =  0; to A B  ^  ̂ X

+266 =  +266. These quantities are recorded as shown 
(step b) and a line is drawn under each to indicate that the joint 
is now in balance, i.e., 2M  a  = 0. As stated before, this line does 
not indicate an addition.

Joint B: The instant after this joint is released, the un­
balanced moment is +320 — 450 =  —130. The subsequent 
rotation will be the same as if a +130 acted on the joint. Hence, 
distribute 1/(1 +  1) X +130 =  +65 to BA  and the same to 
BC.

Joint C: There is no unbalanced moment at this joint because 
of symmetry.
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Joints D and E: Balance and record in the same way as for 
joints B and A , respectively. Note that the signs are reversed 
on this 6ide.

All joints are now in balance. Since the balancing actually 
consisted in allowing one joint at a time to rotate while all others 
were fixed, the resulting carry-over moments must now be com­
puted as indicated in step (e). As has been previously shown, 
the carry-over moment at one end of the member is the distri­
buted moment just determined at the opposite end multiplied 
by + V j.

The moments just carried over throw the joints out of balance 
again. These new moments must be distributed in the same way

cal action of the beam when A  is released while B is assumed 
fixed. Now balance joint B. The unbalanced moment is +320 
+  133 — 450 = +3. Therefore, distribute —3 as shown, 3/7 
to BA  and 4/7 to BC, and at once record the corresponding 
carry-over moment a t C.

There will be no carry-over to A, since this joint was free to 
rotate. I t will be noticed that the solution is completed, since C 
need not be released.

This procedure can be followed with more complicated struc­
tures even when symmetry and freely supported joints are not 
involved.

In most structures, there will be certain joints with a larger

F ig . 3 5

as the fixed-end moments. In Fig. 35, the computations are 
carried through four cycles, after which a double line is drawn 
and the algebraic totals are written.

Other quantities such as moments, shears, and reactions can 
be found now by the usual laws of statics.

S o l u t i o n  S i m p l i f i e d

The foregoing computations for the elevator spar can be 
greatly simplified. Because of symmetry, only one-half of the 
beam need be considered, as shown in Fig. 36. The center joint 
C can be assumed fixed, since we know it does not rotate on 
account of the symmetry of structure and loading. Joint A 
is freely supported and, once released, need not 
be fixed again. This necessitates the use of a 
value for Kab equal to 3/4, the true relative value.
Hence, to simplify computations, Kbc is made 
equal to 4 and Kab equal to 3.17

Joint A  is now balanced as before, and +133 
is immediately carried over to joint B. This 
procedure is more nearly in accord with the physi-

unbalanced moment than others. Where the unbalanced mo­
ment is quite small, it is a waste of effort to balance the joint 
carefully, only to have this balance entirely disrupted later 
by a large carry-over moment from adjacent joints. Hence, 
more rapid convergence will be obtained if the highly un­
balanced joints are first balanced and the resulting carry-over 
moments are recorded before proceeding to the better balanced 
joints.18

18 This method was proposed by L. E. Grinter in discussion of the 
Hardy Cross paper. See Trans. Am.Soc.C.E., vol. 96, 1933, p. 11. 
It is suggested that this method should not be used until complete 
familiarity with the usual procedure is obtained.

17 It can be shown by slope deflection or moment 
areas that the moment needed to produce a given 
rotation at one end of a beam when the other end is 
free is three-fourths as great as if the other end is fixed. F ig . 3 6
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A p p l i c a t i o n  t o  E l e v a t o r  S p a r  W i t h  D e f l e c t e d  S u p p o r t s

The elevator spar of Fig. 34 is attached to the stabilizer. Let 
us suppose that it has been determined from computations or 
from tests that the supports at A, B, D, and E  are deflected by 
known amounts with respect to C. The moments in the spar can 
be found by moment distribution as before, once the revised 
fixed-end moments are determined.

I t  will be recalled that the first step in the Hardy Cross method 
is to assume all joints fixed and then apply the external loads. 
If this fixity is also assumed to take place before the joints are 
deflected, this deflection will set up fixed-end moments in any 
one span, as shown in Fig. 37.

If the member A B  is of constant cross-section, the point of 
contraflexure will be at the mid-point and each half can be 
treated as a cantilever beam with an end deflection of D/2. 

Then:

Let us suppose it has been found that A deflects downward 
Vt in. with respect to B, and B deflects the same with respect to 
C. The deflections of E  and D  are the same as A  and B, respec­
tively. For a lV rin . by 0.035-in. Dural tube, I  = 0.02467 and 
E — 10,400,000. Then the foregoing formula gives the following 
fixed-end moments due to deflection of supports alone:

and

The sign of this moment must be determined by inspection. 
If A deflects downward with respect to B, as in Fig. 37, obviously 
a positive clockwise moment at each end results. When these 
values are added algebraically to the fixed-end moments caused 
by the external loading (Fig. 35), the results are as shown in

Fig. 38, step (/). The succeeding steps in the solution are the 
same as for the example of Fig. 36.

P r a c t ic a l  A p p l i c a t i o n  o f  t h e  M e t h o d  t o  a  C o n t i n u o u s  
F r a m e

A more general use of the method will now be illustrated by 
determining the moments in the continuous frame shown in Fig. 
33. This is the same frame that Professor Cross used in his 
original paper. As he stated at that time, the illustration is 
entirely academic and is selected only because “it involves all 
of the conditions that can occur in a frame which is made up of 
straight members and in which the joints are not displaced.” 
In Fig. 33, the sign convention has been revised to agree with 
that defined at the beginning of this paper. Other minor changes 
from the original paper, suggested in the subsequent discussions, 
have been adopted where it was felt that the chance of error would 
be lessened. No attem pt has been made to introduce short cuts 
in this solution. Joints E  and F could obviously be treated like 
joint A in Fig. 36.

The relative K  = I /L  value for each member is shown by the 
number in the circle near the middle of the span. The sum of 
the K ’s for all members common to a joint is shown in the circle 
at the joint.

I t  is assumed that all joints are fixed, and thSn the 
loads P, Q, R, S, T, W, and V  are applied as shown. The 

; resulting fixed-end moments are then determined and are 
recorded, as shown in the figure, parallel to the member con­
cerned and followed by the letter (a) for reference.

The unbalanced moment at all joints is first distributed, 
step (6). I t  will be noticed that the algebraic sum of the 
fixed-end moments at joint C is +30.0. This is the un­
balanced moment the instant after the joint is released. The 
subsequent rotation will be the same as if a moment of —30.0 
acts on the joint. The distribution will be 4/12 to CB, 2/12 
to CF, 5/12 to CD, and 1/12 to CG, as shown. The sub­

sequent procedure for this and other joints should be apparent 
in view of the previous illustrations.

Only two cycles are used in this example. Further cycles 
will improve some of these results, especially at joint D. The 
probable effect of further computation can always be ascertained 
by inspection of the last set of carry-over moments.

P r a c t ic a l  A p p l i c a t i o n  o f  H a r d y  C r o s s  M e t h o d  t o  D e s i g n  

o f  A i r p l a n e  F u s e l a g e  T r u s s

Fig. 39 shows the forward section of an airplane fuselage 
truss. Member 2U-4U has a concentrated load of 62 lb located 
13 in. from one end, due to instruments. Members 3L-4L and 
4L-5L are subjected to a uniform floor load in addition to con­
centrated loads between panel points due to passengers. Mem­
ber 5L-6L has a concentrated baggage load of 310 lb located as 
shown.

The sizes, lengths, and axial loads determined in the usual way, 

T A B L E  l

M em ber Size, in.
L ength ,

in.
A xial Load, 

lb
2U -4U I 1/4  X  0 .0 3 5 58 + 3 2 6 0
4U -5U 1 X 0 .0 3 5 48 — 2600
5U -6U 1 X 0 .0 3 5 37 — 3860
6U -7U i y 8 X  0 .0 3 5 50 — 3865
2L -3L 1 X 0 .0 3 5 40 — 2830
3L-4L 1V4 X 0 .0 3 5 39 — 5340
4L-5L 1 1 / 4  X  0 .0 3 5 26 — 6733
5L-6L 1 X 0 .0 3 5 36 — 3700
6 L - 7 L 1 X  0 .0 3 5 51 — 2650
2U -3L 1 X  0 .0 3 5 54 — 2065
3L -4U I 1/*  X  0 .0 3 5 57 — 2520
4U -4L i y «  X  0 .0 3 5 58 — 1475
4L -5U 1 1 / 4  X  0 .0 4 9 60 — 4700
5U -5L I 1/4  X  0 .0 4 9 54 — 5216
5U -6L 1 X  0 .0 3 5 65 — 1200
6U -6L 7/s  X  0 .0 3 5 60 —  870
6U -7L 7/s  X  0 .0 3 5 71 +  550
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assuming pin joints for each member, are shown 
in Table 1 (the axial loads are the critical values 
based on a combination of high angle of attack 
and three-point landing conditions).

Under present practise, a truss with this type of 
loading would be analyzed by assuming the mem­
bers which have no side loads to act as struts with 
ends restrained in such a manner that the restraint 
coefficient c = 2 could be used. For the mem­
bers subjected to side loads between joints, the 
Department of Commerce requires that the bend­
ing moments be properly taken into account, but 
does not specify how this should be done.

This paper proposes a method of attack for 
analyzing the effect of these intermediate loads 
which will give definite results even though it is not 
claimed that they will be perfectly accurate. I t  
is believed to be an improvement over the present 
uncertainty and to constitute the first step toward 
obtaining a practical rational solution of the 
problem.

The most important errors in the method are due 
to the following factors:

(а) Bending moments due to joint deflection, 
resulting from changes in length of members, are 
neglected. (See discussion of Hardy Cross paper 
by Thompson and Cutler, Trans. Am. Soc. C.E., 
vol. 96, p. 108, for a method of obtaining these 
moments.)

(б) An axial compression load acting on the ends 
of a continuous beam causes a deflection in each 
span. These deflections in themselves result in 
additional moments a t supports. These moments 
are neglected.”

(c) To get the allowable stress in compression 
members from Fig. 11 of Aeronautics Bulletin, 
No. 7-A, edition of Jan. 1, 1932, arbitrary assump­
tions are made regarding the location of points of 
inflection in selecting the value of L.

(id) To reduce labor, only a part of the truss is 
considered, and the end joints of this portion are 
assumed as fixed against rotation. This is a minor 
error.

The proposed procedure is made up of the 
following steps:

1 Compute the primary bending moments in all 
members due to loads between panel points by 
the Hardy Cross method. If desired, the secon­
dary moments listed under (a) could be included 
in this computation, though that is not done in 
the illustrative example.

2 Determine maximum bending moment and 
unit stresses due to bending and axial load.

3 Determine effective slenderness ratio and 
compute margin of safety from Figs. 10 to 12 of 
Bulletin 7-A.

The determination of the maximum bending 
moment is likely to lead to some difficulties. 
The present practise of using a restraint coeffi­
cient of 2.0 in designing a fuselage member implies 
that the magnitudes and directions of the end mo­
ments are such that there is a point of inflection

11 Since this paper was written, Mr. Ben W. 
James, of Stanford University, has worked out a 
method of moment distribution modified to include 
the effect of axial loads upon the bending moments.
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distant not more than 0.7 L from the end 
of the member. As a result, if a member is 
designed on this basis with a small margin 
of safety for axial load only, the value of 
L / j  will very likely be greater than r. If 
the moments at the ends of such a member 
were independent of the deflections of the 
member (as in a single span with canti­
lever ends as shown in Fig. 11:12 of “Air­
plane Structures” by Niles and Newell), 
the axial load would be greater than the 
critical and the member unable to carry it. 
A member of a fuselage truss, however, is 
more like one span of a continuous beam, 
such as is shown in Fig. 11:13 of “Airplane 
Structures.” The end moments are very 
much influenced by the deflections in the 
member, and the critical load is not that 
which gives L/ j  =  ir, but a larger value 
that would be obtained by computations 
similar to those in article 11:7 of “Air­
plane Structures.”

The rational method of computing the 
end moments would have to include com­
putations of the effect of the secondary de­
flections between panel points to be made by 
some suitable modifications of the extended 
three-moment equation of chapter 11 of 
“Airplane Structures,” but it has not yet 
been found possible to accomplish this. In 
the meantime, it is necessary to make cer­
tain assumptions.

For members in which the axial load is 
tension it seems conservative to neglect the 
effect of combined bending and axial load in 
producing secondary moment. The unit 
stress due to axial tension may be added to 
that due to the bending computed by ap­
plying the Hardy Cross method and the 
sum compared to the allowable unit tension.

If there is no side load on the member 
and the Hardy Cross computations indicate 
that there is no point of inflection in the 
member, it would seem unwise to use a mem­
ber designed on the basis of c = 2.0, but the 
design should be based on c = 1 so that L / j  
would be less than tt, and the formulas of 
chapter 11 of “Airplane Structures” could 
be used with some confidence to determine 
the maximum moment in the span.

If there is no side load and the Hardy 
Cross computations indicate a point of in­
flection, the same practise could be followed, 
but it seems unnecessarily conservative. 
Owing to the continuity of the structure, 
the end moments will increase faster than 
the external loads and the point of inflection 
will probably have only a small movement. 
If this were not the case, the failing loads 
for fuselages subjected to static test would 
have indicated the necessity of designing for 
c =  1 or less, instead of c = 2. The designer 
has two reasonable assumptions he might 
make. He might assume the point of inflec­
tion to be 0.7 L  from the end with the larger 
moment or that it was, say, one-third of the
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distance from the point of inflection indicated by the Hardy Cross 
computations and the end with the smaller moment. In either 
case, the distance from the assumed point of inflection to the end 
with the larger moment would probably give a value of Li / j  
less than ir. This segment of the beam could then be analyzed 
in the usual manner with the formulas of “Airplane Structures” 
and the margins of safety computed by the system recommended 
in Bulletin 7-A.

When there is a side load on the span, there are two similar 
choices. The first is to use a member of such size that L / j  is 
less than i t  and compute the maximum moment from the formulas 
of “Airplane Structures.” The other is to find the points of 
inflection indicated by the Hardy Cross computations of end 
moment and assume points of inflection a little further apart.

In all of these methods, the end moments are assumed to be 
those computed by the Hardy Cross method, neglecting the 
secondaries due to the combination of bending and axial load in 
each member of the structure. This is a serious error, but one 
that cannot be eliminated until a method of applying the ex­
tended three-moment equation to a structure like a fuselage side 
truss has been developed. When that has been done, and 
efforts to this end are being made, a more rational solution of 
the problem can be developed. Until then, the method pro­
posed here may be taken as a preliminary step in this direction 
and should give very reasonable results.

The chief alternative is to assume that all members subjected 
to side load have pin ends and to compute the bending moments 
in them by the formulas of “Airplane Structures.” The ob­
jections to that procedure would be:

1 No computation would be made of the bending moments 
imposed on adjacent members without side load due to the 
continuity of the structure.

2 Members which probably have no point of inflection would 
not be detected, and would be designed for c =  2 instead of 
c =  1.

3 The effect of the end moments in reducing the bending 
moments near the center of the member would be neglected. 
Though this would be conservative, it would often be unneces­
sarily so.

These objections are quite as weighty as those against the pro- 
pose4 method.

In Fig. 39, the fixed-end moments are computed for the dead 
loads between panel points, and the moments at the ends of all 
members are determined from these by the usual Hardy Cross 
method. The results of those computations are used to draw the 
moment diagrams (Fig. 40) in which the ordinates are shown on 
the compression side of the member. The margins of safety are 
found for several representative members as shown below.

Member 2U-4U is subjected to an axial tension of +3260 and 
a concentrated side load. The maximum moment is —513 at 
the left end.

Hence:

at the right end of the member is maximum. Hence the pro­
cedure is the same as for 2U-4U, and the margin of safety is 
+14.8 .
- Member 5U-5L is subjected to a compressive load of —5216 
lb and end moments as shown in Fig. 40. These end moments 
are opposite in rotation, so there are no points of contraflexure 
in the member.

From “Airplane Structures,” we find L / j  = 3.96 for a V / t  
by 0.49 member. This value is too large, since it is greater than 
x. Moreover, there are no points of inflection, so that we are 
not justified in using a length of less than 54 in. It would seem 
most logical to redesign the member so that L / j  <  ir, as sug­
gested.20

In practise it would be necessary to select a larger member and 
re-figure all end moments by the Hardy Cross method, since the 
larger strut would have a different stiffness factor.

Suppose we next try a l s/s by 0.049 member, and assume for 
the purposes of this illustration that a redistribution of moments 
gives Mi = — 165 and Mi  =  — 155. (Transforming the signs to 
agree with those used in the formulas of “Airplane Structures.”)

For these conditions, L / j  =  2.64, and from case A of “Airplane 
Structures” it is found that the maximum moment of —645 
in-lb occurs at a point approximately 27 in. from the bottom end 
of the strut.

At this point:

Allowable stress from Fig. 11 of Bulletin 7-A =  37,000 
Margin of safety =  37,000/28,450 — 1 =  +0.30, 

or +30 per cent 
Member 4U-4L: This member is subjected to a compressive 

load and counter-clockwise moments at each end." The latter 
cause a point of inflection approximately 20 in. from 4U, as 
shown by Fig. 40, and it would seem reasonable to use Li = 
38 in. +  20 in./3 = 44.7 in., or 45 in., say, measured from 4L. 
This is more conservative than using 0.7L,  since the latter would 
give Li = 40.6 in.

For Li  = 45 in., L i / j  = 2.4, and since this is greater than v/%

and

Assuming allowable stress for combined bending and tension 
=  80,000 lb per sq in.,

80,000
Margin of safety =  —  1 =  + 1 -15

Member 6U-7U is a tension member. Obviously, the moment

Allowable stress from Bulletin 7-A = 51,000 
Margin of safety =  +2.2 per cent

Member 4L-5L: This member is acted on by an axial com­
pressive force, end moments of opposite rotation, a concentrated 
side load, and a uniformly distributed side load. For this mem­
ber L / j  =  2.525. Since this value is less than ir, combined 
formulas from cases B and E of “Airplane Structures” may be 
used to compute the moments at several points and draw the 
moment diagram. Points on the moment curve are shown in 
Table 2, in which x  is the distance from 4L.

Points of inflection occur at a: =  13.4 and x  =  23.9. The value 
of Li is first assumed as 15 in. (estimated from the fact that x  =

20 A similar computation would also show the necessity of re­
designing 3L-4L.
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T A B L E  2 P O IN T S  O N  T H E  M O M E N T  C U R V E
X M om ent
0 — 3704 (end 4L)
5 — 2795

10 — 1106
15 +  687
21 + 2 4 9 0  (concentrated  sid e load)
23 +  717
26 — 2140 (end 5L)

13.4 to first point of inflection). The maximum moment for this 
case is —3704 at 4L. Using these values, it is found that the 
margin of safety is —39 per cent.

Li is next assumed as 12 in., which is somewhat in excess of 
the distance between the two computed points of inflection. 
The maximum moment in this part of the span is +2490 under 
the concentrated side load. For these conditions the margin of 
safety is —25 per cent. Since these margins are negative, a heavier 
member should be used and new computations made throughout.

Member 5L-6L: This mem­
ber is also a compression stru t 
acted on by end moments of op­
posite rotations and a concen­
trated side load.

Since L / j  — 3.66, which is 
greater than x, the method of at­
tack used for member 4L-5L 
cannot be used. Owing to the 
continuity of the structure, it 
might be assumed tha t the points 
of inflection moved only one- 
third of the distance from their 
locations as indicated on Fig. 40, 
to the ends of the member. Then 
the central part of the member 
could be treated as a beam 25.6 
in. long with a load of 310 lb 
located 8.25 in. from one end and 
with no end moments. For this 
beam L / j  would be only 2.60, 
and the formulas of “Airplane 
Structures” could be used to 
determine the moment at the 
concentrated load. For this case 
we obtain M max =  432 in-lb. 
Then

fb = 432/0.02474 =  17,500 
fc =  3700/0.10611 =  34,800 
ft  = 52,300 

f t / f t  = 0.34 
r =  0.341 

Li/r = 75 
Ft = 51,000

Margin of safety =  — 0.024,
or —2.4 per cent

This is evidently less con­
servative than the method used 
for member 4L-5L, since that 
method would have involved the 
use of a member with L / j  less 
than ir. I t  is difficult to say 
which method gives results more 
nearly approaching the facts of 
the case. Since there are sel­
dom many members with side 
loads applied to them directly, 
it would seem desirable to use 

the more conservative method illustrated first.
I t  will be apparent that there is no necessity for using much 

accuracy in distributing moments by the Hardy Cross method, 
especially in the earlier trial designs. Even in the final design, 
the necessity of using more than three or four cycles is somewhat 
questionable.

The foregoing examples are intended as illustrations of the 
general method of attack. I t  is felt that this is a step in the 
right direction, and it is hoped that others will be sufficiently 
interested to develop it still further.

C o n c l u s i o n

The Hardy Cross method of analyzing continuous frames by 
moment distribution has been received with widespread en­
thusiasm by structural engineers. I t  is hoped that some of this 
interest will spread to the aeronautical field. One aeronautical
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engineer21 has pointed out in discussion of the Hardy Cross paper 
that the method is of particular value for making rapid com­
parative studies of continuous closed frames, for assisting in 
digesting test results, and for solving other complex problems 
encountered in airplane design.

This method is not claimed to be the most practical for analyz­
ing every structure encountered in design, but it is felt that its

Fio. 42

advantage over present methods is quite marked for many types 
of structures.

Appendix A
S i g n  C o n v e n t i o n s

Sign conventions are often the cause of great confusion, es­
pecially to the person unfamiliar with slope deflection or other 
methods of solving statically indeterminate structures. Since 
the use of correct signs for moments is very important in the 
Hardy Cross method, it is believed advisable to elaborate on 
the brief definitions given at the beginning of this paper.

1 Positive and Negative Moments. Fig. 42 will help the 
reader to visualize the following steps:

(а) Consider tha t all members intersecting a t joint B have 
been cut off an infinitesimal distance away from the joint. (The 
distance is of course exaggerated in the sketch.)

(б) Let the reader imagine that he is standing on joint B and 
is keeping member BA  in equilibrium by exerting a moment 
couple on the end of the cut member. Obviously he must exert 
compression on the side where the beam fibers are in compression 
and tension on the opposite side. In this case, he must exert 
a clockwise moment couple on the end of BA. If he now turns 
toward joint C, he must exert a counter-clockwise moment couple 
on it. From the definition:

If he exerts a clockwise moment couple on the end of the 
member, the moment is positive.

If he exerts a counter-clockwise moment couple on the end of 
the member, the moment is negative.

Hence, the signs of the moments at A, B, and C are as shown 
in the sketch.

2 Joint Rotation. Joint rotation angles are not used in the 
moment-distribution method proper. However, the slope-de- 
flection equations are used in the derivation of several formulas 
in this paper, so the sign convention for joint rotation is given 
to help the reader in following the steps of the derivations.

Referring to Fig. 42, when the load was applied to beam BA, 
the effect was to apply a counter-clockwise moment on the end 
of beam BC, which caused the tangent to the elastic curve of 
this beam to rotate counter-clockwise also. By definition, this 
rotation was negative.

The moment at BA  is positive under these conditions, because 
it is resisting the load. If the load were removed, the beam would 
deflect upward and the positive moment Mba would rotate the

21 See discussion by Elmer F. Bruhn, Trans. A.S.C.E., vol. 96, 
1932, p. 22.

tangent to BA  in a positive clock­
wise direction.

D i s c u s s i o n  o f  S i g n  C o n ­

v e n t i o n

The sign convention which 
Professor Cross used in his paper 
was one with which structural 
engineers are ordinarily most 
familiar—i.e., a positive mo­
ment ca uses compression and 
a negative moment causes ten­
sion in the top fibers of a beam. 
For columns he suggested turn­
ing the drawing clockwise 90 deg 
and treating them as if they were 
beams.

The advantages of this system 
in the analysis of ordinary rec­
tangular building frames are ob­
vious. The disadvantages are 
more apparent when one tries to 
use it on a frame where members 
meet at various angles. The 
checking of a joint to see that 
the moments are in equilibrium 
is somewhat difficult, especially 
if there happen to be more than 
four members meeting at the 
particular joint. Care must also 
be used in determining the un­
balanced moment at a joint 
where more than two members 
meet.

Hence, it has seemed to the 
author that the Wilson sign con­
ventions22 adopted for this paper 
are in general more satisfactory 

and less likely to lead to confusion, in that they automatically 
care for the sign of horizontal, vertical, and diagonal members. 
The checking of joints for equilibrium and the determination of 
unbalanced moments are facilitated, since the moments at a 
joint can be added algebraically. If the algebraic sum is zero, 
the joint is in equilibrium; if the sum is not zero, there is an 
unbalanced moment. A further although perhaps less impor­
tan t advantage of using the sign conventions selected for this 
paper is that multiplying by a carry-over factor of +V» instead 
of —Vj allows less chance for error in computations.

In their text, “Statically Indeterminate Stresses,” Parcel and 
Maney use sign conventions which are the reverse of those used 
by Messrs. Wilson, Richart, and Weiss. The choice between 
these two is largely a m atter of personal preference.

I t  should be noticed that it is more satisfactory to transform 
both the Wilson and the Parcel and Maney sign conventions to 
the convention used by Hardy Cross before computing bending 
and shearing stresses. This transformation will be greatly 
facilitated if a rough sketch is made for each member showing 
the moments and forces acting on it.

Appendix B
F i x e d - E n d  M o m e n t s , C a r r y -O v e r  a n d  S t i f f n e s s  F a c t o r s

Fixed-End Moment for Member Having Constant I:  Fixed- 
end moment was defined a t the beginning of this paper as the

22 See footnote 6.
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moment which would exist at the ends of a loaded member if 
those ends were held rigidly against rotation. These fixed-end 
moments for a beam of constant I  can be found for different types 
of loadings in numerous texts or handbooks,23 since they are also 
used in the slope-deflection equations. They can also be found 
quite readily by applying the three-moment equation and solv­
ing for the two unknown end moments or they can be determined 
by use of the M / E I  diagram.

The latter method is applied to a uniformly loaded beam such 
as that shown in Fig. 3 as follows:

Area of the M / E I  diagram for uniform loading is WL*/12E1  
(the area under a parabola of base L  and maximum ordinate 
W L/8EI) .  Then the slope of the tangent to either end of the 
curved beam is numerically equal to the shear at the end when 
the span is loaded with the M / E I  diagram. That is, 8a =
— 6b — W L*/2 iE I.  To fix the ends in a horizontal position it 
is now necessary to apply a counter-clockwise moment at A  
and a clockwise moment at B,  such that the ends will be rotated 
through an angle — 6a =  + 04. The M / E I  diagram, when only 
the end moments act on the beam, will be a rectangle of height 
Ma — Mb and length L. Hence,

and

also

The fixed-end moments can be worked out for other loadings 
in the same way.

Carry-Over Factor for Member Having Constant I :  As 
previously stated under “Definitions,” the carry-over factor for 
a beam fixed at A  and simply supported at B  is the ratio Mab/Mba 
and is equal to +  V2 for straight beams of constant section. 
This relation can be found from the three-moment equation, 
by use of the M / E I  diagram or from the slope-defiection equa­
tions. By the latter method:

** References are “Structural Theory,” by Sutherland and Bow­
man, p. 191, and “Stresses in Framed Structures,” by Hool and 
Kinney, p. 485. (See also Fig. 41.)

If the fixity is at end A , 8a =  0. R  =  0, since there is no 
movement of supports. Whence Mab/Mba = + ’A.

Fixed-End Moments and Carry-Over Factors for Members 
Having Varying Moments of Inertia: A structure made up 
of members in which the moment of inertia varies from point 
to point along the span is quite complicated to analyze by 
any of the methods proposed so far. The Hardy Cross method 
can be advantageously applied to this type of frame, although 
considerable labor is involved in obtaining the required fixed- 
end moments, stiffness factors, and carry-over factors. In the 
general case, where the member not only has a changing cross- 
section, but also is unsymmetrical with respect to loading and 
form, it is necessary to find a fixed-end moment, stiffness factor, 
and carry-over factor to use with each end of the member, a 
total of six constants for the beam.

No attempt will be made in this paper to present the method 
of determining these constants. The reader is referred to a very 
able presentation offered in discussion of the Hardy Cross paper 
by A. W. Earl (Trans. Am.Soc.C.E., Vol. 96, 1933, p. 112). A 
somewhat different method was proposed by Prof. George E. 
Large in discussing the same paper (Trans. Am.Soc.C.E., Vol. 
96, 1933, p. 101).


